Ref No: PRP-IKG125000005 Date: 27-AUG-2020 Author: AB, VK, MG. Version: 1

Dilution Protocol **GelMA 20%**

This is a suggested procedure, please adjust according to your experimental needs. To maintain the sterility of the product, work under sterile conditions.

Protocol aim

The aim of this protocol is to provide instructions on how to dilute GeIMA 20% (w/w) to your desired concentration using Reconstitution Agent P. The obtained GeIMA hydrogel can be used as a bioink on its own or as a component in other bioink formulation. Addition of a photoinitiator (PI) and use of 365 or 405 nm LED modules ensure stable and controlled photocrosslinking of GeIMA constructs for 3D cell culturing.

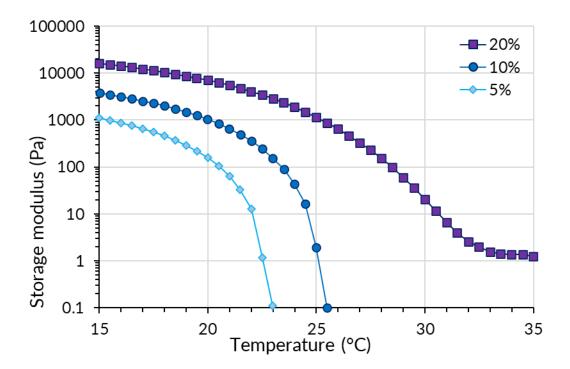
Materials needed

- GeIMA 20%*
- Reconstitution Agent P* or an alternative buffer of choice
- Photoinitiator*
- Female/female Luer lock adaptor*
- 0.22 µm sterile syringe filter
- BIO X* or INKREDIBLE series* 3D Bioprinter
- Syringes with Luer lock connections
- Sterile containers

*The product can be purchased in the CELLINK store at www.cellink.com/store/.

Protocol

Step	Title	Material	Description
	Defining desired concentrations		 Record the desired final concentration of GelMA (c_F). Record the desired final volume of GelMA bioink to prepare (V_F). Record the desired final concentration of Pl (c_{PLF}). Common concentrations are between 0.01% and 0.5%.
			See Figure 1 for difference in temperature behavior of GelMA solutions at different concentrations.
used. $V_{GelMA20\%} =$		- Calculate the volume of GeIMA 20% to be used. $V_{GelMA20\%} = \frac{V_F \cdot c_F}{20\%}$ See Table 1 for suggested cF.	
			- Calculate the volume of Reconstitution Agent P, V_R , to be used.
			$V_R = V_F - V_{GelMA20\%}$ - Calculate the needed concentration of PI in the reconstitution buffer, C _{PI_R} , to achieve your desired final concentration of PI.
			$c_{PI_R} = rac{V_F \cdot c_{PI_F}}{V_R}$
			- Calculate the amount of PI, m_{PI} , needed to prepare V _R and 1 mL extra to account for absorption in the syringe filter.
			$m_{PI} = c_{PI_R} \cdot (V_R + 1 mL)$
3	Prepare PI and reconstitution agent	 Photoinitiator Reconstitution Agent P Syringe 0.22 µm sterile 	 Dissolve m_{Pl} in V_R + 1 mL of Reconstitution Agent P. Sterile filter using a syringe and 0.22 μm sterile syringe filter into a container.
		syringe filter - Container	Note: always remember to protect all Pl containing solutions from light.
4	Prepare GelMA bioink	 PI and reconstitution agent GelMA 20% Syringes 	 Transfer V_R of the prepared reconstitution agent with PI into a sterile syringe that can accommodate minimum V_F. Heat it to ~35°C. Heat the GeIMA 20% at ~35°C until it is liquid.



		- Luer lock adaptor	 Transfer V_{GelMA20%} of GelMA 20% into another syringe. Connect the two syringes using a Luer lock adaptor, make sure there are no air bubbles present. Mix the two solutions by passing them back and forth between the syringes until homogenized. Note: if air bubbles are introduced into the mixture, centrifuge the heated solution at 1500-2000 rpm for 1-2 min to remove them.
5	Storage	- GelMA bioink	- Store at 4-8°C protected from light.
6	Bioprinting	 BIO X or INKREDIBLE + GelMA bioink 	 For an example on bioprinting GeIMA 10% with cells, see the <i>Bioprinting Protocol GeIMA Bioink</i>. For bioprinting GeIMA 5% with cells, the <i>Bioprinting Protocol GeIMA Fibrin</i> can be used as a reference with slight modifications in pressure and no thrombin crosslinking.

Table 1. Suggested concentrations and the corresponding volume of GeIMA 20% and reconstitution agent used for the preparation of 5 mL of GeIMA bioink.

Final concentration of GeIMA, c _F (%)	Volume of GeIMA 20%, V _{GeIMA20%} (mL)	Volume of reconstitution agent with PI, V_R (mL)
5	1.25	3.75
10	2.5	2.5

Figure 1. Decrease of storage modulus for GeIMA hydrogels at various concentrations over an increasing temperature.

4