Directions for Use

FibriCol®

PURIFIED BOVINE TYPE I ATEO-COLLAGEN SOLUTION, 10 MG/ML
Catalog Number 5133

Product Description

Advanced BioMatrix offers FibriCol® collagen solution which is highly purified atelo-collagen at approximately 10 mg/mL, pH 2, and is sterile filtered. FibriCol® is about 97% Type I collagen with the remainder being comprised of Type III collagen. The purity of the FibriCol® collagen is ≥99%. SDS-PAGE electrophoresis shows the typical α, β and γ banding pattern for collagen. The actual collagen concentration is printed on the product label and certificate of analysis for each specific lot.

Type I collagen is a major structural component of skin, bone, tendon, and other fibrous connective tissues, and differs from other collagens by its low lysine hydroxylation and low carbohydrate composition. Although a number of types of collagen have been identified, all are composed of molecules containing three polypeptide chains arranged in a triple helical conformation. Slight differences in the primary structure (amino acid sequence) establish differences between the types. The amino acid sequence of the primary structure is mainly a repeating motif with glycine in every third position with proline or 4-hydroxyproline frequently preceding the glycine residue. Type I collagen is a heterotrimer composed of two α1(I) chains and one α2(I) chain, which spontaneously form a triple helix scaffold at neutral pH and 37°C.

Control of cell growth, differentiation, and apoptosis in multicellular organisms is dependent on adhesion of cells to the extracellular matrix (ECM). Given that Type I collagen is an abundant component of the ECM, cells cultured in three dimensional (3D) collagen gels simulate the in vivo cell environment better than traditional 2D systems. This has been shown for a number of cell types including cardiac and corneal fibroblasts, hepatic stellate cells (HSCs), and neuroblasts/oma cells.

Several diseases can affect the mechanical properties of the ECM while other disease states may be caused by changes in the density or rigidity of the ECM. Since Type I collagen is a key determinant of tensile properties of the ECM, 3D collagen gels are useful in studies of mechano-transduction, cell signaling involving the transformation of mechanical signals into biochemical signals.

3D gels allow for the study of the effects of the mechanical properties of the ECM, such as density and rigidity, on cell development, migration, and morphology. Unlike 2D systems, 3D environments allow cell extensions to simultaneously interact with integrins on all cell surfaces, resulting in the activation of specific signaling pathways. Gel stiffness or rigidity also affects cell migration differently in 3D versus 2D environments. Furthermore, integrin-independent mechanical interactions resulting from the entanglement of matrix fibrils with cell extensions are possible in 3D systems, but not in 2D systems where the cells are attached to a flat surface.

Different collagen subtypes are recognized by a structurally and functionally diverse group of cell surface receptors, which recognize the collagen triple helix. The best-known collagen receptors are the integrins α1β1 and α2β1. α1β1 is the major integrin on smooth muscle cells, while α2β1 is the major form on epithelial cells and platelets. Both forms are expressed on many cell types including fibroblasts, endothelial cells, osteoblasts, chondrocytes, and lymphocytes. Some cell types may also express other collagen receptors such as glycoprotein VI (GPVI), which mediates both adhesion and signaling in platelets. Other collagen receptors include discoidin domain receptors, leukocyte-associated Ig-like receptor-1, and members of the mannos receptor family.

This product is prepared from collagen extracted from bovine hide and contains a high monomer content. Starting material was isolated from a closed herd and purified using a controlled manufacturing process following applicable aspects of cGMP. This process contains built-in, validated steps to insure inactivation of possible prion and/or viral contaminants.

© Copyright, May 2018 Advanced BioMatrix, Inc. Rev 03
Characterization and Testing

<table>
<thead>
<tr>
<th>Parameter/Test/Method</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collagen Concentration (mg/ml) - Biuret</td>
<td>9.0 - 11.5</td>
</tr>
<tr>
<td>Purity - SDS PAGE Electrophoresis – Silver staining</td>
<td>≥ 99%</td>
</tr>
<tr>
<td>Electrophoretic Pattern - SDS PAGE Electrophoresis - Coomassie</td>
<td>≥ 85% collagen contained with α, β and γ, < 15% collagen contained within bands traveling faster than alpha</td>
</tr>
<tr>
<td>pH</td>
<td>1.9 – 2.1</td>
</tr>
<tr>
<td>Osmolality (mOsmo H2O/Kg)</td>
<td>≤ 35</td>
</tr>
<tr>
<td>Gel Formation Tube Test (minutes)</td>
<td>≤ 40</td>
</tr>
<tr>
<td>Kinetic Gel Test (minutes)</td>
<td>≤ 40</td>
</tr>
<tr>
<td>Fibrillogenesis (Absorbance Units)</td>
<td>> 0.5</td>
</tr>
<tr>
<td>Sterility (USP modified)</td>
<td>No Growth</td>
</tr>
<tr>
<td>Endotoxin LAL (EU/ml)</td>
<td>≤ 1.0</td>
</tr>
<tr>
<td>Gel Stiffness Plateau</td>
<td>Characteristic</td>
</tr>
<tr>
<td>Cell Attachment</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Storage/Stability: The product is stored at 2–10 °C and ships on frozen gel packs. Do not freeze. The expiration date is listed on the product label and certificate of analysis for each specific lot. The expiration date is applicable when product is handled and stored as directed.

Precautions and Disclaimer

This product is for R&D use only and is not intended for human or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

3-D Gel Preparation Procedure

1. Slowly add 1 part of chilled 10X PBS or 10X culture media to 8 parts of chilled collagen solution with gentle mixing/swirling.

2. Adjust pH of mixture to 7.0–7.5 using sterile 0.1 M NaOH. Monitor pH adjustment carefully (pH meter, phenol red, or pH paper).

3. Adjust final volume to a total of 10 parts with sterile water.

4. To prevent gelation, maintain temperature of mixture at 2–10° C.

5. To form gel, warm to 37° C. Allow approximately 40 minutes for gel formation.

References