-
Collagen
-
Type I - Atelocollagen
- PureCol® Solution, 3 mg/ml (bovine) #5005
- Nutragen® Solution, 6 mg/ml (bovine) #5010
- FibriCol® Solution, 10 mg/ml (bovine) #5133
- PureCol® EZ Gel, Solution, 5 mg/ml (bovine) #5074
- PureCol® Lyophilized, 15 mg (bovine) #5006
- VitroCol® Solution, 3 mg/ml (human) #5007
- VitroCol® Lyophilized, 15 mg (human) #5008
-
Type I - Telocollagen
- TeloCol®-3 Solution, 3 mg/ml (bovine) #5026
- TeloCol®-6 Solution, 6 mg/ml (bovine) #5225
- TeloCol®-10 Solution, 10 mg/ml (bovine) #5226
- RatCol® for 2D and 3D, Solution, 4 mg/ml (rat) #5153
- RatCol® High Concentration, Solution, 10 mg/ml (rat)
- RatCol® lyophilized, 100 mg (rat)
- RatCol® for Coatings, Solution, 4 mg/ml (rat) #5056
- Type I - Insoluble Collagen
- Type I - Bioinks
- Type II Collagen
- Type III Collagen
- Type IV Collagen
- Collagen Standard
-
PureCol® Collagen Coated Plates
- Custom-Coated Cultureware and Plates
- Collagen Coated T-25 Flasks #5029
- Collagen Coated 6-well Plates #5073
- Collagen Coated 12-well Plates #5439
- Collagen Coated 24-well Plates #5440
- Collagen Coated 48-well Plates #5181
- Collagen Coated 96-well Plates #5072
- Collagen Coated 384-well Plates #5380-5EA
- Collagen Coated 100 x 20 mm Dishes #5028
- MatTek Glass-Bottom Dishes
- MatTek Multi-Well Plates
- Collagen Scaffolds
- Collagen Hybridizing Peptides
- Learn more about Collagen
- Tunable Stiffness
- CytoSoft® Rigidity Plates
-
Bioprinting
- Support Slurry for FRESH Bioprinting
-
Bioinks for Extrusion Bioprinting
- Lifeink® 200 Collagen Bioink (35 mg/ml) #5278
- Lifeink® 220 Collagen Bioink (70 mg/ml) #5343
- Lifeink® 240 Acidic Collagen Bioink (35 mg/ml) #5267
- Lifeink® 260 Acidic Collagen Bioink (70 mg/ml) #5358
- GelMA Bioink
- GelMA A Bioink
- GelMA C Bioink
- Pluronic F-127 40% Sterile Solution
- GelMA 20% Sterile Solution
- Alginate 5% Sterile Solution
- Photoinitiators
- Bioinks for BIONOVA X
- Bioinks for Lumen X
- DLP Printing Consumables
-
Create Your Own Bioinks
- PhotoCol® Methacrylated Collagen
- PhotoGel® Methacrylated Gelatin 95% DS
- PhotoGel® Methacrylated Gelatin 50% DS
- PhotoHA®-Stiff Methacrylated Hyaluronic Acid
- PhotoHA®-Soft Methacrylated Hyaluronic Acid
- PhotoAlginate® Methacrylated Alginate
- PhotoDextran® Methacrylated Dextran
- PEGDA (Various Molecular Weights)
- Silk Fibroin, Solution
- PhotoSericin® Methacrylated Sericin
- Bioprinters
- Learn more about Bioprinting
-
3D Hydrogels
- Thermoreversible Hydrogel
- Silk Fibroin
-
Type I Collagen for 3D Hydrogels
- PureCol® Solution, 3 mg/ml (bovine) #5005
- Nutragen® Solution, 6 mg/ml (bovine) #5010
- FibriCol® Solution, 10 mg/ml (bovine) #5133
- PureCol® EZ Gel, Solution, 5 mg/ml (bovine) #5074
- VitroCol® Solution, 3 mg/ml (human) #5007
- TeloCol®-3 Solution, 3 mg/ml (bovine) #5026
- TeloCol®-6 Solution, 6 mg/ml (bovine) #5225
- TeloCol®-10 Solution, 10 mg/ml (bovine) #5226
- RatCol® for 3D gels, Solution, 4 mg/ml (rat) #5153
- HyStem® Thiolated Hyaluronic Acid
- Methacrylated Collagen
- Methacrylated Gelatin
- Methacrylated Hyaluronic Acid
- Diacrylates
- Collagen Sponges
- Methacrylated Polysaccharides
- Spheroids and Organoids
- Learn more about 3D Hydrogels
- Extracellular Matrices
- HyStem / Hyaluronic Acid
-
Adhesion Peptides / Proteins
-
Recombinant Adhesion Proteins
- CD2, 0.5 mg/ml #5086
- CDH3, 0.5 mg/ml #5124
- CDH13, 0.5 mg/ml #5125
- CD14, 0.5 mg/ml #5089
- CDH18, 0.5 mg/ml #5090
- CD40, 0.5 mg/ml #5093
- CD86, 0.5 mg/ml #5096
- CD164, 0.5 mg/ml #5100
- CD270, 0.5 mg/ml #5127
- CD274, 0.5 mg/ml #5126
- CD276, 0.5 mg/ml #5123
- E-Cadherin (CD324), 0.5 mg/ml #5085
- ICAM2, 0.5 mg/ml #5107
- Adhesion Peptides
- Collagen Hybridizing Peptides
- Learn more about Adhesion Peptides / Proteins
- Reagents
- Assays
VitroCol®
Type I Human Collagen Solution, 3 mg/ml
Catalog #5007
VitroCol®
Type I Human Collagen Solution, 3 mg/ml
Catalog #5007
VitroCol® is a 3 mg/ml, type I human collagen (atelocollagen) solution for 2D and 3D cell culture, or as a collagen standard. VitroCol® collagen is naturally secreted from human neo-natal fibroblast cells, then processed and purified to yield the naturally produced human collagen.
Product References
References for VitroCol®:
Andrée, B. et al. Formation of three-dimensional tubular endothelial cell networks under defined serum-free cell culture conditions in human collagen hydrogels. Scientific Reports 9, (2019).
Shieh, Hester F., et al. "Comparisons of human amniotic mesenchymal stem cell viability in FDA-approved collagen-based scaffolds: Implications for engineered diaphragmatic replacement." Journal of pediatric surgery 52.6 (2017): 1010-1013.
van der Velden, Jos LJ, et al. "Transforming Growth Factor-ß Induces A Mesenchymal Profile In Human Nasal Epithelial Cells." D76. ALVEOLAR EPITHELIUM: NOVEL TOOLS AND PHENOTYPES. American Thoracic Society, 2012. A6322-A6322.
Tashima, Takumi, et al. "Osteomodulin regulates diameter and alters shape of collagen fibrils." Biochemical and biophysical research communications 463.3 (2015): 292-296.
Spiller, Kara L., Suzanne A. Maher, and Anthony M. Lowman. "Hydrogels for the repair of articular cartilage defects." Tissue engineering part B: reviews 17.4 (2011): 281-299.
Brilha, Sara, et al. "Monocyte adhesion, migration, and extracellular matrix breakdown are regulated by integrin αVβ3 in Mycobacterium tuberculosis infection." The Journal of Immunology 199.3 (2017): 982-991.
Jonsdottir, Hulda R., and Ronald Dijkman. "Characterization of human coronaviruses on well-differentiated human airway epithelial cell cultures." Coronaviruses. Humana Press, New York, NY, 2015. 73-87.
Sabbione, Florencia, et al. "Neutrophil extracellular traps stimulate proinflammatory responses in human airway epithelial cells." Journal of innate immunity 9.4 (2017): 387-402.
Dos Santos Brilha, S., et al. "Monocyte adhesion, migration and extracellular matrix breakdown is regulated by integrin αVβ3 in Mycobacterium tuberculosis infection."
Brilha, Sara, et al. "Monocyte Adhesion, Migration, and Extracellular Matrix Breakdown Is Regulated by Integrin aVb3 in Mycobacterium tuberculosis Infection." (2017).
Colace, T., et al. "Analysis of morphology of platelet aggregates formed on collagen under laminar blood flow." Annals of biomedical engineering 39.2 (2011): 922-929.
Muthard, Ryan W., and Scott L. Diamond. "Blood clots are rapidly assembled hemodynamic sensors: flow arrest triggers intraluminal thrombus contraction." Arteriosclerosis, thrombosis, and vascular biology 32.12 (2012): 2938-2945.
Maloney, S. F., Lawrence F. Brass, and S. L. Diamond. "P2Y12 or P2Y1inhibitors reduce platelet deposition in a microfluidic model of thrombosis while apyrase lacks efficacy under flow conditions." Integrative Biology 2.4 (2010): 183-192.
Bauer, Rebecca N., et al. "Interaction with epithelial cells modifies airway macrophage response to ozone." American journal of respiratory cell and molecular biology 52.3 (2015): 285-294.
Kawamura, Shunsuke, et al. "Identification of common monocyte progenitors, pre-monocytes, and granulocyte monocyte progenitors in human umbilical cord blood." Experimental Hematology 43.9 (2015): S72.
Product Certificate of Analysis
No result for .
Product Disclaimer
This product is for R&D use only and is not intended for human or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.